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Abstract— We have built and characterized a compact, 

simple, and flexible 3D camera based on interferometric fringe 

projection and stereo reconstruction. The camera uses multi-

frame active stereo as basis for 3D reconstruction, providing 

full-field 3D images. We demonstrate real time 3D 

reconstruction in direct sunlight, with 3D reconstruction time < 

100 milliseconds. Total 3D measurement noise is 0.3 mm at 0.6 

m measured at per pixel-level. When employed for object 

localization, precision is 20 µm and 0.3 mrad at 500 mm 

distance. The system provides reliable object localization for 

relative motion rates up to at least 50 mm/second. Compliance 

with a wide set of flight materials and space robotics 

requirements has been investigated. 

Keywords—3D camera, object localization,  in-orbit servicing, 

manufacturing, and construction 

I. INTRODUCTION 

There is a wide range of optical 3D sensing modalities 
available, that each offer specific trade-offs between data 
density, accuracy and working range (amongst other 
concerns). Structured Light and Active Stereo (multi-frame) 
systems can deliver high accuracy 3D data at short range, 
through projection of multiple patterns. This makes them ideal 
cameras for robot operations like inspection, manipulation or 
interaction with objects of both known and unknown shapes, 
e.g., for in-orbit servicing or planetary exploration.  

Traditionally, structured light systems have tended to be 
bulkier and more complex than their Assisted Stereo (single 
frame) counterparts and use in sunlight has traditionally been 
difficult due to the relatively weak projected signal.  

We present a novel 3D camera (Figure 1) design based on 
a stereo camera setup with an interferometric projector 
making the system simple and compact, while at the same 
time powerful enough to provide robust data even in sunlight.  

The 3D-camera is designed for space-based applications. 
As opposed to ground-based, often indoor applications, such 
a use case comes with its own set of design constraints. A 
camera for space needs to be compact, robust, low-power and 
must be functional in direct sunlight. At the same time, the 
camera must deliver the excellent 3D data quality expected 
from state-of-the-art Structured Light 3D cameras, i.e. dense 
point clouds with per pixel noise on the order of 0.1 mm. 

The work presented is an expansion of previous work [1], 
where we can now demonstrate real time 3D capture and 
sunlight resistance. We have also extended our results to not 
only report on the quality of the point clouds, but also how 
well the camera performs for object localization of objects in 

the scene. Testing at Thales Alenia Space’s ROBY facilities 
indicates micro-meter level accuracy in object localization, 
significant motion tolerance (at least 50 mm/s), and 
compliance with many relevant space materials.  

At the same time, no single 3D system can cover all use 
cases. For e.g. in-orbit servicing, we would expect 2-3 
different systems to be necessary to cover the entire working 
range from initial localization to actual grasping and 
manipulation by a robotic end-effector. Table I presents a 
summarized trade-off of different technologies, and briefly 
outlines their relative strengths and weaknesses. As one can 
see, the presented system is particularly useful for close-range 
interactions, e.g. for the final phases of approach, or during the 
actual servicing of in-orbit satellites.  

The system is not dependent on fiducial markers, making 
it capable of localizing both compliant and non-compliant 
objects, as well as providing high-resolution 3D maps for e.g. 
integrity monitoring. In addition, without the projector it can 
also be employed as a regular unassisted stereo camera, 
enabling longer range or lower power measurement 
modalities.  

For covering the entire localization chain, our system 
could fit well together with e.g. a Flash LIDAR system that 
allows object localization far beyond the working range of our 
system. Together these systems can provide robust 
localization of both cooperative and non-cooperative clients. 

The remaining paper is structured as follows: Chapter II 
and III outline the hardware and software implementation. 
Chapter IV and V describe our results in terms of testing for 
accuracy and in-orbit applications. Chapter VI concludes and 
summarizes the paper.  

Figure 1: Actual camera. Pen placed in front as size reference. 



II. OPTICAL CONCEPT 

As noted above, a 3D camera for space-based applications 
comes with a quite particular set of design constraints, and one 
cannot simply re-use a system architecture that would work in 
an in-door setting. A camera for space needs to be compact, 
robust, low-power and must be functional in direct sunlight. 
At the same time, the camera must deliver the excellent 3D 
data quality expected from state-of-the-art Structured Light 
3D cameras, i.e. dense point clouds with per pixel 
measurement noise (precision) on the order of 0.1 mm. 

Starting with the requirement of low-power operation in 
sunlight, it becomes apparent that laser illumination combined 
with spectral filtering is required. Compactness and 
robustness preclude the use of DMD based projection. Instead, 
we have developed an Active Stereo 3D camera with a 
projector based on a Michelson interferometer and a movable 
micro-mirror using laser illumination. This projector design 
can be made exceedingly compact, while the use of laser 
illumination combined with sunlight filtering allows us to 
project patterns that can outshine the sunlight background, 
even with moderate power consumption. 

The optical layout of the camera is shown schematically in 
Figure 2, and described in detail in [1]. In short, a collimated 
laser beam is sent through a Michelson interferometer where 
one arm carries a MEMS micro-mirror which is movable in 
tip, tilt and piston motion. After recombination, the two beams 
are focused with a focusing lens, creating two mutually 
coherent virtual point sources.  

At a distance 𝑅 = √𝑥2 + 𝑦2 + 𝑧2 , the intensity 

distribution, 𝐼, of a source with wavelength 𝜆 is given by: 

𝐼 = 𝐴 (1 + cos (
2𝜋𝑥𝑓

𝜆𝑅
tan 𝜃 +

2𝜋Δ𝑧

𝜆
))    

We observe that we can project sinusoidally varying 
patterns with adjustable spatial frequency and phase. Such a 
set of patterns is sufficient for high-quality 3D reconstruction, 
provided that a suitable set of frequencies and phases can be 
chosen [7]. The relative position of the two virtual point 
sources, and thereby the intensity profile on the scene, is given 
by Δ𝑧 and 𝜃, i.e. the displacement of the movable mirror. We 
have developed a piezo-actuated MEMS micro-mirror 
capable of re-positioning in 2 ms, while maintaining a static 
position within 15 nm or 5 µrad during camera exposures [8]. 
The maximum tilt angle of the mirror (6 mrad) defines the 
range of spatial frequencies that can be projected.  

  While our projector design is simple and compact, the 
MEMS mirror is a novel component whose robustness must 
be verified prior to use in space. It has therefore been tested 
for radiation compliance to 100 kRad, TVAC cycling (-40°C 
- +70°C) and vibration (20g), with no signs of degradation, 
making it a highly suitable candidate for space applications 
[9]. The tip-tilt and piston range of the mirror gives us access 
to 2𝜋 phase modulation, and a frequency span Δ𝑓 of around 
20 fringes visible within our acquired images. 

The projected pattern is observed by two cameras acquiring 
synchronized image pairs, operating with >100 Hz image rate 
and a resolution of 500 x 500 pixels. We use 15 image pairs 
for 3D reconstruction, moving the mirror to different 𝜃 and Δ𝑧 
between each image pair. With a piezo-based system, we 
expect slow drift in 𝜃 and Δ𝑧 over time, and we select a 3D 
reconstruction method which is robust to such drift, as will be 
discussed in section III. The 15 images are captured in 150 ms, 
limited only by our current camera driver. We automatically 
adjust the exposure time for the cameras to avoid saturation, 
with the same exposure time used for all images within a 
single capture.  

TABLE I. INDICATIVE TRADE-OFF TABLE BETWEEN OPTICAL 3D LOCALIZATION TECHNOLOGIES 

Technology  Working 

range 

Accuracy Data 

density 

Sunlight 

tolerance 

Power Size Computational 

load 

Structured light (ours) 0.5 m -1.5 m High Dense Good Medium Medium High 

Flash LIDAR [2] 2 m - 4 km Low Dense Good High Large Medium 

SPAD Flash LIDAR [3], [4] 1 m -300 m Low Dense Bad Medium Large Medium 

Scanning LIDAR[5] 1 m – 1.5 km Medium Dense Good High Very large Low 

Stereo (unassisted) [6] 0.5 m -1.5 m Medium Sparse Very good Medium Medium High 

2D cameras with markers 0.5 m -1.5 m Medium Very sparse Good   Low Small Medium 
        

Figure 2: Schematic layout of the camera/interferometric projector. 



 To ensure that the projected pattern is visible also in direct 
sunlight, the cameras are equipped with narrow-band pass 
sunlight filters with a pass width of 4 nm centered at the laser 
wavelength. To utilize such a narrow passband, a number of 
design choices are made. Firstly, the filter is placed between 
the lens and the sensor, where the angular distribution of the 
incoming light is the smallest. Secondly, the lens is designed 
for chief ray angle normal to the sensor across the sensor. 
Thirdly, the f-number of the lens is chosen to f/5.6, further 
reducing the extent of the incoming light cone. This relatively 
high f-number has the added advantage of a relatively large 
depth of focus, ensuring a wide operating range for the 
camera. Finally, the laser itself is temperature (and thus 
wavelength) stabilized using a built-in TEC element and 
operates at 810 nm and 800 mW optical power. In total, the 
3D camera consumes around 10 W (excluding 3D 
reconstruction) for the laser (5 W) and the two cameras 
(2 × 2.5 W).   

III. 3D RECONSTRUCTION  ALGORITHM  

Our 3D reconstruction algorithm is designed with a basis 
in stereo algorithms. A full description of the algorithm is 
given in [1], we provide an abridged description here.  

Our basis in stereo algorithms means that we are interested 
in first establishing a subpixel disparity estimate between 
camera 1 and 2, and subsequently performing a homographic 
transform to convert the disparity estimates into a 3D point 
cloud.  

The system works by illuminating the scene with patterns 
of selected spatial frequencies and phase. The goal is that 
every object point receives its unique temporal "signature" 
that makes it possible to determine for a pixel A in camera 1 
which is the corresponding pixel B in camera 2. As we have a 
stereo system, we can use the epipolar constraint [10] to 
constrain the search in the vertical direction, meaning that the 
projected codes only need to be unique in the horizontal 
direction. Unlike traditional stereo, the use of temporally 
changing patterns that cover the whole field-of-view allows us 
to capture detailed, full 3D data of surfaces that do not have 
any structure or surface texture, providing us with one 
independent distance measurement per camera pixel.  

The use of sinusoidal patterns would normally hint 
towards the use of atan based reconstruction algorithms for 
matching [11], possibly combined with number theoretic or 
other approaches [12]  for resolving the phase ambiguities. 
However, as the mirror cannot guarantee an exact phase shift 
between patterns (confer section II) and the phase will drift 
over time, we have selected to use a conservative approach 
relying on zero-normalized cross-correlation (ZNCC) instead, 
noting that it in other works outperforms many other decoders 
[13]. In addition, ZNCC can easily be made robust towards 
differences in signal amplitude between the two cameras, 
unlike other disparity metrics like sum of absolute differences.  

We perform a full search for the best match within the 
disparity window/working range of the camera. This ensures 
that we will find the best match irrespective of any sudden 
discontinuities in the scene structure, at the expense of a larger 
computational load.  

We calculate depth data directly from stereo disparity 
estimates by using a homographic transform after median 
filtering the disparity estimates. The homographic transform 
is established on basis on the Zhang's camera calibration 
method [14].  

A. Pattern / frequency selection for projection 

Projecting a repeating pattern, such as a sine wave, will 
lead to ambiguities in the 3D reconstruction, as the signal will 
look the same in several positions in the image. We need to 
project sine waves with a carefully selected set of frequencies 
to resolve these ambiguities, whilst simultaneously managing 
laser speckle, slightly unreliable frequency/phase information, 
and partially specular objects. By selecting the right set of 
patterns, we can enable the disparity estimation algorithm to 
reduce the impact of these artifacts.  

We use the following strategies to select the frequency and 
phase of our patterns: 

1. We include the highest frequency the interferometer 
can project into the set, as we previously have found 
this to significantly improve accuracy [15].  

2. We project 3 phases {0°, 120°, 240°}  to ensure a 
constant amplitude for the signal. This allows us to 
robustly compensate for object albedo. 

3. Beyond this, we choose the set of frequencies that 
provide the best ratio of main lobe to side lobe height 
for the working range of our system for the cross-
correlation matrix of the selected codes.  

As we project a limited number of patterns, we have found 
it possible to perform an exhaustive search of relevant 
frequencies to optimize the system according to its working 
range, as detailed in our previous publication [1]. 

B. GPU implementation 

The algorithm operates almost exclusively on individual 
pixels, meaning that it is very well suited for modern parallel 
architectures. In short, our GPU implementation of the 
algorithm can be broken down into the following steps: 

1. Stereo rectification, removing lens distortion. This 
can be done simultaneously with the reception of the 
images from the cameras and upload to the GPU. The 
step is realized through a look-up table.  

2. Image stack normalization, removing ambient light 
and object albedo. This is performed per pixel right 
after reception. At the same time, data is reshuffled 
from a space-oriented to a time-oriented data layout 
for improving the speed of later memory accesses. 

3. Cross-correlation between images to produce a 
disparity map along the epipolar lines of the images.  

4. 3D reconstruction by multiplying the resulting 
disparity map with the homomorphic matrix provided 
by the camera calibration. 

We chose to implement the algorithm in CUDA, using the 
Python Numba wrapper, instead of a higher-level GPU 
interface like Halide [16]. Our consideration was that this 
provided the best balance between implementation effort, 
flexibility, and performance for this application.  

Our GPU implementation follows closely the original 
Matlab® implementation used in our previous reporting of 
results [1]. Small modifications have been made to adapt the 
algorithm for efficient implementation, like changing 2D 
noise filters to 1D filters. These changes have had no real 
impact on 3D performance but reduced 3D reconstruction 
time to less than 100 ms on all tested GPUs, meaning that 
reconstruction is real-time. Our algorithm uses roughly 30 
GFLOP per fully reconstructed 3D image.  



C. 6DOF Matching Algorithm 

In our experiments, we have quantified not only the per-
point accuracy of our 3D point cloud, but also the total 
registration error after registering a known 3D shape to our 
point cloud. Registration in this context means recovering the 
position and orientation of the object in the scene coordinate 
frame.  

We used Iterative Closest Points [17] to perform the actual 
registration. We used point-to-plane as our distance metric 
during the iterations. The algorithm was initialized manually 
once per approach trajectory (section V) for the first image 
only. For subsequent images, the previous position was used 
to initialize the registration. The point cloud was subsampled 
prior to registration, and points far away from the initial 
position were removed prior to registration. 

IV. RESULTS  

To verify the 3D data quality from the camera, we perform 
a set of tests, each intended to probe different aspects of the 
camera performance. The tests presented in this chapter are 
performed by imaging a planar surface, to isolate the effect of 
the camera (as opposed to effects introduced e.g. by point 
cloud matching algorithms). Firstly, we perform imaging of 
compliant targets at rest and calculate the point precision of 
the camera. This represents a best-case scenario and is the 
limiting performance of the camera. Secondly, we introduce 
sunlight to our scene. As argued above, a 3D camera for space 
needs to provide data also in direct sunlight. Sunlight will 
reduce the observed contrast of our projected patterns and will 
thus degrade our precision and reduce the useful range of the 
system. Thirdly, we introduce relative motion between camera 
and scene. Motion during capture will make our patterns shift 
during acquisition, again degrading the 3D data quality. 

A. Point precision at rest 

We capture repeated 3D images on planar surfaces both 
indoor and in sunlight and calculate pr pixel standard 
deviation as function of distance. The results are shown in 
Figure 3.  

In darkness, we observe as expected a standard deviation 
proportional to distance squared [15]. At 60 cm distance, the 
pr pixel standard deviation (precision) is <100 µm. In sunlight, 

the background signal adds to the measurement standard 
deviation, with increasing influence towards longer distances. 
Nevertheless, we demonstrate successful 3D reconstruction at 
up to 1.3 m in direct sunlight. Improved exposure parameters 
will extend useful range in direct sunlight. 

B. Relative motion 

Further, we perform the same imaging of a planar surface 
in an indoor setting, but this time with the camera moving 
perpendicular to the planar surface. This test probes the data 
quality as function of relative velocity.  

Figure 4 shows an example data set, where the camera is 
moved at 4 cm/s. The left figure shows the recorded average 
distance, while the right figure shows the average deviation 
from planar surface across the image. Assuming that the 
imaged surface is indeed planar, this deviation will give an 
indication of data quality deterioration as velocity increases.  

We observe that the deviation from planar surface with the 
camera at rest is approx. 400 µm, while the deviation during 
motion is approx. 450 µm, a relatively modest deterioration. 
These tests indicate that the camera can handle relative motion 
rates up to 4 cm/s. At motion rates of 8 cm/s, the deviation 
increases above 1500 µm, indicating that 3D reconstruction is 
severely affected at such high motion rates.  

V. TESTS TOWARDS IN-ORBIT SERVICING  

Having verified the basic functionality of the camera under 
somewhat idealized conditions, we now seek to test the 
camera in conditions closer to an in-orbit servicing scenario. 
In the previous chapter, we assessed the point precision of the 
camera on compliant surfaces. In this chapter, we present 
testing of precision as well as trueness. Further, we are well 
aware of the fact that the surface under consideration will 
strongly affect the measurement result. Traditionally, black 
and metallic / specular surfaces are known to be challenging 
for 3D imaging systems. However, in a satellite scenario, 
these are typically the surfaces that will be encountered. 

 For testing in relevant settings, we use the Thales Alenia 
Space - France Robotic Orbital Facility (ROBY) test bench in 
Cannes (Figure 6). The ROBY test bench consists of two 
robots, the “Sensor Robot” (SEN) where the 3D camera is 
mounted, and the “Mockup robot” (MKP) where the 3D target 
to be imaged is mounted. In an in-orbit situation, the SEN 
robot would equal the “servicer” whereas the MKP would 
equal the “client”. Each of the two robots can move 
independently in 6 degrees of freedom (DOF). In addition, one 
of them is mounted on a 10m rail for longer range motion. The 

Figure 4: Data from tests during motion at 4 cm/s. X-axis: 3D image index.  

Left: Average distance to imaged surface. Right: Deviation from planar 

surface. We observe a slight increase in measurement noise during motion. 

Figure 3: 3D point precision in dark (blue) and in sunlight (red) as 

function of distance to object. 



ROBY facility also has access to satellite mockups and a set 
of flight material samples.  

For a visual impression of the 3D data quality, we image 

a satellite mockup. Figure 5 shows a segment of the mockup 

with the details of the Launch Adapter Ring (LAR) clearly 

visible. Figure 7 shows further details of the LAR, as well as 

an alignment pyramid marker on a background of a slightly 

wavy black MLI.  

A. 6DOF precision and accuracy 

For quantitative assessment of 3D data quality, we mount 
a brushed metal cube on the MKP. This represents a simple 
target, both in terms of imaging and subsequent point cloud 
matching. We perform a series of approaches with the SEN, 
at varying relative motion rates. We perform real-time 3D-
acquisition and reconstruction of the scene, followed by 
offline 6DOF matching as outlined in section III.C. 

The recorded 6DOF figures are matched with those 
reported by the robotic positioning system. An example result 
is shown in Figure 8. The rotation coordinates are kept fixed 
during this trajectory, and we present XYZ-coordinates from 
3D camera and from robotic positioning. At distances between 
450 and 1300 mm, we find that the coordinates correspond to 
within 1 % of the measured distances, even at motion rates up 
to 7 cm/s. This is indicative of excellent trueness (accuracy), 
while remaining aligned with the usual mission requirements 
for the navigation chain.  

Much of the discrepancy can be explained by a <100 ms 
timing offset between 3D camera and robot, and by <25 ms 

timestamping error / jitter. Both of these effects are most 
prominent at high velocities. With stationary robots, we 
calculate the standard deviation in 6DOF estimates, finding 
that 6DOF precision is better than 50 µm and 1 mrad, even up 
to distances of 1.3 meters. 

The precision and accuracy obtained with our 3D camera 
are equal to or better than the positioning accuracy of the 
robotic test bench ground truth. As such, we cannot with 
confidence state whether the error lies mainly at the camera or 
at the robotic positioning. Previous tests from the ROBY 
facility using 2D cameras and markers show typical precision 
and accuracy of such a traditional image processing chain 
around 1 cm / 1 degree, i.e. approx. 20 times higher 
measurement noise. The advantages of an Active Stereo 3D 
camera are evident for the cases where detailed 3D / 6DOF 
data is needed.  

B. Surface/materials testing 

To assess the expected data quality on realistic targets, we 
acquire 3D data on a set of flight material samples. Quite 
expectedly, we find that the data quality depends on the 
surface under investigation, ranging from simple surfaces 
such as brushed metals, plastics and composites giving good  
3D quality in all cases, to mirroring surfaces such as Optical 
Solar Reflectors which do not provide 3D data using 
measurement methods with point-like illumination.  

Table II shows a simplified compliance table. Such a table 
is useful to understand the expected data quality, and to select 
a suitable imaging geometry. In particular, avoiding imaging 
perpendicular to specular surfaces can significantly increase 
data quality and coverage of the scene. 

Figure 6: Test of camera at robotic test bench at Thales Alenia Space on a 

satellite mockup. 

Figure 7: Detail of launch adapter ring with alignment pyramid marker. 

Figure 5: Launch adapter ring. Distance is color-coded to emphasize that the LAR is clearly standing out in the data. 



VI. SUMMARY AND OUTLOOK  

We have presented a compact, robust and low-power 3D 
camera that in tests shows good 3D data quality, motion 
tolerance, sunlight resistance and compatibility with most 
relevant space materials.  

Table III shows the specification of our current prototype, 
and we see clear possibilities for optimizing the design to 
achieve a further significant reduction in size and mass. Figure 
9 shows a miniaturized version of the 3D camera, where the 
projector has been reduced in size to 20 x 30 x 50 mm, limited 
only by the need for manual assembly. This is small enough 
to fit between the two cameras, significantly reducing the size 
of the 3D camera. 

The MEMS micro-mirror has been radiation, TVAC and 
vibration tested with no degradation in performance. The 
camera’s capability of reliably imaging both cooperative and 
non-cooperative clients broadens its usage and provides 
robustness for interaction. The 3D reconstruction algorithm is 
well-suited for implementation on parallel architectures like 
GPU’s and FPGA’s.  

 For implementation into an actual space camera, it will be 
natural to both embed the 6DOF estimation into the camera 
itself, plus moving the 3D reconstruction algorithm from GPU 
to a space-compliant FPGA. Such space-compliant FPGAs 
with significant computational capacity have recently been 
launched (e.g. Xilinx™ Versal), which could enable a power-
efficient, high-performance system.  

For future space applications like in-orbit servicing and 
planetary exploration, the 3D camera can fit very well in a 3D 
sensing portfolio, providing high quality 3D data for shorter 

working ranges. This can enable robust, efficient, and safe 
inspection and manipulation for space robotics.  
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TABLE II. FLIGHT MATERIAL COMPLIANCE. 

Materials Compliance 

Brushed metal surfaces 
Plastic and 3D printed surfaces 
Composite materials 

Tolerant at all angles 

MLI surfaces 

Polished metal surfaces 

Glossy paint 

Tolerant at surface normals >10 degrees away from camera z-axis. 

Highly specular surfaces (solar panels etc). Limited compliance. 
Best effort at surface normals >10 degrees away from camera z-axis. 

Mirroring surfaces (Optical Solar Reflectors etc.) Non-compliance. 

TABLE III. CAMERA SPECIFICATION FOR CURRENT PROTOTYPE AND 

OPTIMIZED VERSION 

 Current prototype Optimized version 

Resolution 500x500 pix 500x500 pix 

Field-of-view 15x15 deg 15x15 deg 

Capture time 150-450 ms 75-200 ms 

Compute time < 100 ms < 100 ms 

Size, mass 175 x 125 x 88 mm 145 x 80 x 50 mm 

Mass 2 kg 0.4 kg 

3D point 
precision 

0.1 mm at 0.6 m 0.1 mm at 0.6 m 

3D trueness <1 % of distance <1 % of distance 

6DOF precision <50 µm, <1 mrad <50 µm, <1 mrad 

Power incl. 
stereo 
reconstruction 

30 W @ 10 Hz 10 W @ 10 Hz 

Figure 8: Tests towards motion, XYZ coordinates. Robot position (ground truth) and recovered camera position plotted on top of each other.  
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Figure 9: Current prototype (left) and miniaturized projector (right). Pen included as size reference.  


